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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to
consider for publication new solutions or new insights on past problems.

1940. [1994: 108; 1995: 107; 1995: 205; 1996: 321] Proposed by Ji
Chen, Ningbo University, China.

Show that if x; y; z > 0,

(xy + yz+ zx)

�
1

(x+ y)2
+

1

(y+ z)2
+

1

(z + x)2

�
� 9

4
:

Solution by Marcin E. Kuczma, Warszawa, Poland.
Let F be the expression on the left side of the proposed inequality.

Assume without loss of generality x � y � z � 0, with y > 0 (not excluding
z = 0), and de�ne:

A = (2x+ 2y � z)(x� z)(y� z) + z(x+ y)2;

B = (1=4)z(x+ y � 2z)(11x+ 11y+ 2z);

C = (x+ y)(x+ z)(y+ z);

D = (x+ y + z)(x+ y � 2z) + x(y � z) + y(x� z) + (x� y)2;

E = (1=4)(x+ y)z(x+ y+ 2z)2(x+ y� 2z)2:

It can be veri�ed that

C2(4F � 9) = (x� y)2
�
(x+ y)(A+ B + C) + (x+ z)(y+ z)D=2

�
+ E:

This proves the inequality and shows that it becomes an equality only
for x = y = z and for x = y > 0, z = 0.

Comment.

The problem is memorable for me! It was my \solution" [1995: 107]
that appeared �rst. According to someone's polite opinion it was elegant,
but according to the impolite truth, it was wrong. I noticed the fatal error
when it was too late to do anything; the issue was in print already.

In [1995: 205] a (correct) solution by Kee-Wai Lau appeared. Mean-
while I found two other proofs, hopefully correct, and sent them to the ed-
itor. Like Kee-Wai Lau's, they required the use of calculus and were lacking
\lightness", so to say, so the editor asked [1995:206] for a \nice" solution.
I became rather sceptical about the possibility of proving the result by those
techniques usually considered as \nice", such as convexity/majorization ar-
guments | just because the inequality turns into equality not only for
x = y = z, but also for certain boundary con�gurations.

In response to the editor's prompt, VedulaMurty [1996: 321] proposed
a short proof avoiding hard calculations. But I must frankly confess that I do
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not understand its �nal argument: I do not see why the sum of the �rst two
terms in [1996: 321(3)] must be non-negative. While trying to clarify that, I
arrived at the proof which I present here.

This proof can be called anything but \nice"! Decomposition into sums
and products of several expressions, obviously nonnegative, and equally ugly,
has the advantage that it provides a proof immediately understood and ver-
i�ed if one uses some symbolic calculation software (with some e�ort, the
formula can be checked even by hand). But the striking disadvantage of such
formulas is that they carefully hide from the reader all the ideas that must
have led to them; they take the \background mathematics" of the reasoning
away. In the case at hand I only wish to say that the equality I propose here
has been inspired by Murty's brilliant idea to isolate the polynomial that
appears as the third term in [1996: 321(3)] and to deal with the expression
that remains.

I once overheard a mathematician problemist claiming lack of sympathy
to inequality problems. In the ultimate end, he said, they all reduce to the
only one fundamental inequality, which is x2 � 0!

2124. [1996: 77] Proposed by Catherine Shevlin, Wallsend, England.

Suppose that ABCD is a quadrilateral with \CDB = \CBD = 50�

and \CAB = \ABD = \BCD. Prove that AD ? BC.

A B

C

D

I. Solutionby FlorianHerzig, student, Perchtoldsdorf, Austria. (Essentially
identical solutionswere submitted by Jordi Dou, Barcelona, Spain and Hans
Engelhaupt, Franz{Ludwig{Gymnasium, Bamberg, Germany. The solution
by Carl Bosley, student, Washburn Rural High School, Topeka, Kansas, USA
was very similar.)

Let F1 and F2 be the feet of the perpendiculars from D and A to BC
respectively. Let p = BC = CD and q = AC. Then, applying the Sine Rule
to 4ABC, we have

CF1 = p cos 80�; CF2 = q cos 70� =
p sin 30�

sin80�
=
p cos 70�

2 sin 80�
:
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Thus we have

CF1

CF2
=

cos80�

cos 70�

2 sin 80�

=
2 sin80� cos 80�

cos 70�
=

sin160�

sin20�
= 1:

Thus, F1 = F2, and this point is the intersection of AD and BC, whence
AD ? BC.

II. Solution by Federico Ardila, student, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA.

Consider a regular 18{gon P1P2 : : : P18.
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We will �rst show that P1P10,
P2P12 and P4P15 concur.

By symmetry, P1P10, P4P15 and
P5P16 are concurrent. Thus it
is su�cient to prove that P1P10,
P2P12 and P5P16 are concurrent.

Using the angles version of Ceva's
theorem in triangle 4P1P5P12, it
if su�cient to prove that

sin(\P1P12P2)

sin(\P2P12P5)
� sin (\P12P5P16)
sin(\P16P5P1)

� sin (\P5P1P10)

sin(\P10P1P12)
= 1;

or
sin(10�)

sin(30�)
� sin(40

�)

sin(30�)
� sin(50

�)

sin(20�)
= 1:

But this is true since

sin 10� sin40� sin 50� = sin10� sin 40� cos 40�

= sin10�
�
sin80�

2

�
=

sin10� cos 10�

2

=
sin20�

4
= (sin30�)

2
sin20�:

So, P1P10, P2P12 and P4P15 concur at, say, Q.

Using this, it is easy to check that

\P2P4Q = \P4QP2 = 50�;

and
\P2P1Q = \P4QP1 = \QP2P4 (= 80�):

This information clearly determines the quadrilateral P1P2P4Q up to simi-
larity, so P1P2P4Q � ACDB.
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Since P1P4 ? P2Q, it follows that AD ? BC.

Also solved by CLAUDIO ARCONCHER, Jundia��, Brazil; �SEFKET
ARSLANAGI �C, University of Sarajevo, Sarajevo, Bosnia and Herzegovina;
SAM BAETHGE, Science Academy, Austin, Texas, USA; CHRISTOPHER J.
BRADLEY, Clifton College, Bristol, UK; TIM CROSS, King Edward's School,
Birmingham, England; CHARLES R. DIMINNIE, Angelo State University,
San Angelo, TX, USA; DAVID DOSTER, Choate Rosemary Hall, Wallingford,
Connecticut,USA; RICHARD I. HESS, Rancho Palos Verdes, California, USA;
PETER HURTHIG, Columbia College, Burnaby, BC; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; V �ACLAV KONE �CN �Y, Ferris State
University, Big Rapids, Michigan, USA; MITKO KUNCHEV, Baba Tonka
School of Mathematics, Rousse, Bulgaria; KEE-WAI LAU, Hong Kong;
P. PENNING, Delft, the Netherlands; TOSHIO SEIMIYA, Kawasaki, Japan;
D.J. SMEENK, Zaltbommel, the Netherlands; PANOS E. TSAOUSSOGLOU,
Athens, Greece; MELETIS VASILIOU, Elefsis, Greece (two solutions); and
the proposer.

The proposer writes: The genesis of this problem lies in a question
asked by Junji Inaba, student, William Hulme's Grammar School, Manch-
ester, England, inMathematical Spectrum, vol. 28 (1995/6), p. 18. He gives
the diagram in my question, with the given information:

\CDA = 20�; \DAB = 60�;

\DBC = 50�; \CBA = 30�;

and asks the question: \can any reader �nd \CDB without trigonometry?"
In fact, such a solution was given in the next issue of Mathematics Spec-

trum by Brian Stonebridge, Department of Computer Science, University of
Bristol, Bristol, England.

The genesis of the diagram is much older, if one produces BD and AC to
meet at E. See Mathematical Spectrum, vol. 27 (1994/5), pp. 7 and 65{
66. In one reference, the question of �nding \CDA is called \Mahatma's
Puzzle", but no reference was available. Can any reader enlighten me on the
origin of this puzzle?

2125. [1996: 122] Proposed by Bill Sands, University of Calgary,
Calgary, Alberta.

At Lake West Collegiate, the lockers are in a long rectangular array,
with three rows of N lockers each. The lockers in the top row are numbered
1 to N , the middle row N +1 to 2N , and the bottom row 2N +1 to 3N , all
from left to right. Ann, Beth, and Carol are three friends whose lockers are
located as follows:
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: : : : : :

��@@

��@@

��@@

By the way, the three girls are not only friends, but also next-door
neighbours, with Ann's, Beth's, and Carol's houses next to each other (in that
order) on the same street. So the girls are intrigued when they notice that
Beth's house number divides into all three of their locker numbers. What is
Beth's house number?

Solution by Han Ping Davin Chor, student, Cambridge, MA, USA.

From the diagram, it can be observed that the lockers have numbers

x+ 3; N + x+ 5 and 2N + x;

where 1 � x � N , x a positive integer. Here locker x+3 is in the �rst row,
locker N +x+5 is in the second row, and locker 2N +x is in the third row.
Let y be Beth's house number, where y is a positive integer. Since y divides
into x+ 3, N + x+ 5 and 2N + x, y must divide into

2(N + x+ 5)� (2N + x)� (x+ 3) = 7:

Therefore y = 1 or 7. However, Beth's house is in between Ann's and
Carol's. Assuming that 0 is not assigned as a house number, it means that
Beth's house number cannot be 1 (else either Ann or Carol would have a
house number of 0). Therefore Beth's house number is 7.

Also solved by SAM BAETHGE, Science Academy, Austin, Texas, USA;
CHRISTOPHER J. BRADLEY, Clifton College, Bristol, UK; TIM CROSS, King
Edward's School, Birmingham, England; CHARLES R. DIMINNIE, Angelo
State University, San Angelo, TX, USA; HANS ENGELHAUPT, Franz{Lud-
wig{Gymnasium, Bamberg, Germany; J. K. FLOYD, Newnan, Georgia, USA;
IAN JUNE L. GARCES, Ateneo deManila University,Manila, the Philippines,
and GIOVANNI MAZZARELLO, Ferrovie dello Stato, Firenze, Italy; SHAWN
GODIN, St. Joseph Scollard Hall, North Bay, Ontario; FLORIAN HERZIG,
student, Perchtoldsdorf, Austria; RICHARD I. HESS, Rancho Palos Verdes,
California, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Aus-
tria; KATHLEEN E. LEWIS, SUNY Oswego, Oswego, New York, USA;
DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA; JOHN GRANT
MCLOUGHLIN, Okanagan University College, Kelowna, B. C.; P. PENNING,
Delft, the Netherlands; GOTTFRIED PERZ, Pestalozzigymnasium, Graz, Aus-
tria; CORY PYE, student,Memorial University of Newfoundland, St. John's,
Newfoundland; JOEL SCHLOSBERG, student, Hunter College High School,
New York NY, USA; ROBERT P. SEALY, Mount Allison University, Sackville,
New Brunswick; HEINZ-J�URGEN SEIFFERT, Berlin, Germany; DAVID
STONE, Georgia Southern University, Statesboro, Georgia, USA; EDWARD
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T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; KENNETH M.
WILKE, Topeka, Kansas, USA; and the proposer.

Two solvers eliminated 1 as a possible answer, because the problem
said that the girls were \intrigued" that Beth's house number divided all
their locker numbers, which would hardly be likely if Beth's house number
were just 1! Thus they didn't need the information about the location of
Beth's house at all. Another solver, to whom the editor has therefore given
the bene�t of the doubt,merely stated that \the locationof Ann's and Carol's
houses doesn't enter into the problem".

2126. [1996: 123] Proposed by Bill Sands, University of Calgary,
Calgary, Alberta.

At Lake West Collegiate, the lockers are in a long rectangular array, with
three rows ofN lockers each, whereN is some positive integer between 400

and 450. The lockers in the top row were originally numbered 1 to N , the
middle row N + 1 to 2N , and the bottom row 2N + 1 to 3N , all from left
to right. However, one evening the school administration changed around
the locker numbers so that the �rst column on the left is now numbered 1

to 3, the next column 4 to 6, and so forth, all from top to bottom. Three
friends, whose lockers are located one in each row, come in the next morning
to discover that each of them now has the locker number that used to belong
to one of the others! What are (were) their locker numbers, assuming that
all are three-digit numbers?

Solution by Ian June L. Garces, Ateneo de Manila University, Manila,
the Philippines, and GiovanniMazzarello, Ferrovie dello Stato, Firenze, Italy.

The friends' locker numbers are 246, 736 and 932.

To show this, �rst consider any particular locker. Then the original
(before the change) number of this locker can be written as iN + j, where

0 � i � 2 (the row) and 1 � j � N (the column). With respect to this
original locker number, this particular locker has a new (after the change)
number 3(j � 1) + (i+ 1) = 3j + i� 2.

Consider now the three friends' lockers. Since the three lockers are
located one in each row, we can let them be j1, N + j2 and 2N + j3 where
1 � j1; j2; j3 � N . For each of these lockers, the corresponding new locker
numbers will be 3j1�2, 3j2�1 and 3j3. Then there will be two possibilities
for how their original locker numbers and their new locker numbers were
\properly" interchanged:

Possibility 1. The �rst possibility is when

j1 = 3j3; (1)

N + j2 = 3j1 � 2; (2)
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2N + j3 = 3j2 � 1: (3)

Substituting (1) into (2) and solving for j2, we have j2 = 9j3 � 2 � N .
Substituting this last equality into (3) and solving for j3, we have

j3 =
5N + 7

26

which implies that N � 9 mod 26. Choosing N between 400 and 450, we
have the uniqueN = 425 and thus j3 = 82, j2 = 311 and j1 = 246. Hence
the original locker numbers are 246, 736 and 932 which, after the change,
will respectively be 736, 932 and 246 which satisfy what we want.

Possibility 2. The other possibility is when

j1 = 3j2� 1; N + j2 = 3j3; 2N + j3 = 3j1 � 2:

Similar computation as in Possibility 1 yields N = 425, j2 = 115, j3 = 180

and j1 = 344. But this means that one of the lockers will have number 1030
which is contrary to the assumption.

Therefore, the only possible locker numbers of the three friends are
246, 736 and 932.

Also solved by SAM BAETHGE, Science Academy, Austin, Texas, USA;
CHRISTOPHER J. BRADLEY, Clifton College, Bristol, UK; JOSEPH
CALLAGHAN, student, University of Waterloo, Waterloo, Ontario; HAN
PING DAVIN CHOR, student, Cambridge, MA, USA; TIM CROSS, King Ed-
ward's School, Birmingham, England; CHARLES R. DIMINNIE, Angelo State
University, San Angelo, TX, USA; HANS ENGELHAUPT, Franz{Ludwig{Gym-
nasium, Bamberg, Germany; SHAWNGODIN, St. Joseph ScollardHall, North
Bay, Ontario; RICHARD I. HESS, Rancho Palos Verdes, California, USA;
PETER HURTHIG, Columbia College, Burnaby, BC; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; KATHLEEN E. LEWIS, SUNY
Oswego, Oswego, New York, USA; DAVID E. MANES, SUNY at Oneonta,
Oneonta, NY, USA; P. PENNING, Delft, theNetherlands; GOTTFRIED PERZ,
Pestalozzigymnasium, Graz, Austria; ROBERT P. SEALY, Mount Allison Uni-
versity, Sackville, New Brunswick; DAVID STONE, Georgia Southern Uni-
versity, Statesboro, Georgia, USA; and the proposer.

Many solvers mentioned that the other set of locker numbers arising
from the problem is 344, 540 and 1030. Some remarked that the value ofN
was 425 in both cases. However, apparently nobody noticed that these two
triples of numbers enjoy a curious relationship:

246 + 1030 = 736 + 540 = 932 + 344 !

So now readers are challenged to �gure out why this relationship is true.

When N = 425, the problem says that the numbers 246; 736;932 are
interchanged when the lockers are renumbered. So let's call this set of num-
bers a \swapset" for N = 425; that is, for a particular N , a swapset is
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any set of numbers which get swapped among each other by the renumber-
ing. We want true swapping; so we don't allow the sets f1g or f3Ng (or
the \middle" locker f(3N+1)=2g whenN is odd), which are obviously un-
changed by the renumbering, to be in swapsets. Lots of problems concerning
swapsets could be looked at. For example, one of the solvers (Stone) points
out that there are no swapsets of two numbers when N = 425, but there
are when N = 427: lockers 161 and 481 get swapped. Which values of N
have swapsets of size two? Here's another problem. It's clear that the set
of all numbers from 1 to 3N , minus the two or three numbers that stay the
same, will be a swapset for every N . But are there any numbers N which
have no other swapsets? If so, can you describe all suchN?

2127. [1996: 123] Proposed by Toshio Seimiya, Kawasaki, Japan.
ABC is an acute triangle with circumcentre O, andD is a point on the

minor arc AC of the circumcircle (D 6= A;C). Let P be a point on the side
AB such that \ADP = \OBC, and let Q be a point on the side BC such
that \CDQ = \OBA. Prove that\DPQ = \DOC and\DQP = \DOA.

Solution by Florian Herzig, student, Perchtoldsdorf, Austria.
First I prove that B is an excentre of4PDQ.

\ABC = 180� � \ADC

= 180� � (\ADP + \CDQ+ \PDQ)

= 180� � (\CBO+ \ABO + \PDQ)

= 180� � \ABC � \PDQ; (1)

) \ABC = 90� � \PDQ

2
;

\PDB = \ADB � \ADP = \ACB � \OCB = \ACO;

and

\QDB = \CDB � \CDQ = \CAB � \OAB = \CAO:

Since 4OAC is isosceles, we have that \PDB = \QDB and thus BD is
the internal angle bisector of \PDQ. (2)

What is more, we know that, in any4XY Z, the excentre, M , (whose
excircle touches Y Z), is exactly the point on the internal angle bisector of
\Y XZ outside the triangle for which

\YMZ = 180� � \MZY � \MY Z

=
\Y

2
+
\Z

2
=

180� � \X

2
= 90� � \X

2
:

Therefore B is an excentre of4PDQ because of (1) and (2). Then BP
and BQ are the external angle bisectors of \DPQ and \DQP , respectively,
whence

\APD = \BPQ and \CQD = \BQP: (3)
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Starting with
\BOC = 2\BDC

we obtain

180� � 2\OBC = 2\BDC;

90� � \OBC = \BDC;

180� � \BDC = 90� + \OBC;

\BCD + \DBC = 90� + \ADP;

(180� � \DAP ) + \DBC = 90� + (180� � \DAP � \APD);

\DBC = 90� � \APD;

\DOC = 180� � (\APD + \BPQ)

[ because of (3) ]

= \DPQ;

and analogously \DOA = \DQP:

Also solved by CHRISTOPHER J. BRADLEY, Clifton College, Bristol,
UK; HAN PING DAVIN CHOR, student, Cambridge, MA, USA; P.
PENNING, Delft, the Netherlands; WALDEMAR POMPE, student, Univer-
sity of Warsaw, Poland; D.J. SMEENK, Zaltbommel, the Netherlands; and
the proposer.

2128. [1996: 123] Proposed by Toshio Seimiya, Kawasaki, Japan.
ABCD is a square. Let P and Q be interior points on the sides BC

and CD respectively, and let E and F be the intersections of PQ with AB
and AD respectively. Prove that

� � \PAQ+ \ECF <
5�

4
:

Solution by Heinz-J �urgen Sei�ert, Berlin, Germany.
In cartesian coordinates, let A = (0; 0), B = (1; 0), C = (1; 1),

D = (0; 1), P = (1; p) and Q = (q;1), where 0 < p; q < 1:

Then E =
�
1�pq
1�p

; 0
�
and F =

�
0; 1�pq

1�q

�
, tan\PAB = p, tan\DAQ = q,

tan\DCF = FD =
q(1�p)
1�q

, tan\BCE = BE =
p(1�q)
1�p

.

Since

\PAQ =
�

2
� \PAB � \DAQ and \ECF =

�

2
+ \DCF + \BCE;

it follows that

\PAQ+ \ECF

= � + arctan
q(1 � p)

1� q
� arctan q + arctan

p(1 � q)

1� p
� arctan p

= � + arctan

�
(1� pq)(p� q)2

(1� p)(1� q)(1� pq)2 + (p(1 � q)2 + q(1� p)2)(p+ q)

�
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by the addition formula for arctangents. Since 0 < p; q < 1, it su�ces to
show that

0 � (1� pq)(p� q)2 < (p(1� q)2 + q(1� p)2)(p+ q):

The left inequality is obviously true, while the right follows from the identity

(p(1�q)2+q(1�p)2)(p+q) = (1�pq)(p�q)2+2pq((1�p)2+(1�q)2):

Also solved by �SEFKET ARSLANAGI �C, University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina; NIELS BEJLEGAARD, Stavanger, Norway;
FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain;
CHRISTOPHER J. BRADLEY, Clifton College, Bristol, UK; JOSEPH
CALLAGHAN, student, University of Waterloo; RICHARD I. HESS, Rancho
Palos Verdes, California, USA; VICTOR OXMAN, University of Haifa, Haifa,
Israel; and the proposer.

2130. [1996: 123] Proposed by D.J. Smeenk, Zaltbommel, the Neth-
erlands.

A and B are �xed points, and ` is a �xed line passing through A. C is a
variable point on `, staying on one side of A. The incircle of�ABC touches
BC at D and AC at E. Show that lineDE passes through a �xed point.

SolutionbyMitko Kunchev, Baba Tonka School ofMathematics, Rousse,
Bulgaria.

We choose the point P on ` with AP = AB. Let C be an arbitrary
point of `, di�erent from P but on the same side ofA. The incircle of4ABC
touches the sides BC, AC, AB in the points D, E, F respectively. Let
ED meet PB in the point Q. According to Menelaus' Theorem applied to
4CBP and the collinear points E, D, Q, we get

PE

EC
� CD
DB

� BQ
QP

= 1: (1)

We have EC = CD (because they are tangents from C). Similarly,
AF = AE, so that FB = EP (since AB = AP ). But also, FB = DB, so
that DB = PE. Setting EC = CD and DB = PE in (1), we conclude that
BQ = QP ; therefore Q is the mid-point of BP . Hence the line DE passes
through the �xed point Q.

Also solved by NIELS BEJLEGAARD, Stavanger, Norway; FRANCISCO
BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain; CHRISTOPHER
J. BRADLEY, CliftonCollege, Bristol, UK; FLORIANHERZIG, student, Perch-
toldsdorf, Austria; RICHARD I. HESS, Rancho Palos Verdes, California, USA;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
P. PENNING, Delft, the Netherlands; TOSHIO SEIMIYA, Kawasaki, Japan;
PAUL YIU, Florida Atlantic University, Boca Raton, Florida, USA (two sol-
utions); and the proposer.



180

Seimiya and Yiu used the same argument as Kunchev. Seimiya men-
tions that the result is easily shown to hold also when C coincides with P
(even though the featured argument breaks down). Yiu extends the result
to include excircles: The line joining the points where an excircle touches the
segment BC and the line ` also passes through Q.

2131. [1996: 124] Proposed by Hoe Teck Wee, Singapore.

Find all positive integers n > 1 such that there exists a cyclic permuta-
tion of (1; 1; 2; 2; : : : ; n; n) satisfying:

(i) no two adjacent terms of the permutation (including the last and �rst
term) are equal; and

(ii) no block of n consecutive terms consists of n distinct integers.

Solution by the proposer.

It is clear that 2 does not have the desired property.

Suppose 3 has the speci�ed property. So there exists a permutation of
(1; 1; 2; 2; 3; 3) satisfying the two conditions. WLOG assume that the �rst
term is 1. From (ii) we know that the second term is not 1, say it is 2.
From (i) the third term must be 1. From (i) and (ii) the fourth term must
be 2. This leaves the two 3s as the last two terms, contradicting (i).

Suppose 4 has the speci�ed property. So there exists a permutation of
(1; 1; 2; 2; 3; 3; 4; 4) satisfying the two conditions. Arrange these eight (per-
muted) numbers in a circle in that order so that they are equally spaced. Then
the two conditions still hold. Now consider any four consecutive numbers
on the circle. If they consist of only two distinct integers, we may assume
by (i) that WLOG these four numbers are 1; 2; 1; 2 in that order, and that the
other four numbers are 3; 4; 3; 4. Then (ii) does not hold. If they consist of
three distinct integers, by (i) and (ii) we may assume WLOG that these four
numbers are (a) 1; 2; 3; 1 or (b) 1; 2; 1; 3 or (c) 1; 2; 3; 2, in these orders. By
reversing the order, (c) reduces to (b). Next consider (a). If the next number
is 2, then by (ii) we have 1; 2; 3; 1; 2; 3, and the two 4s are adjacent, contra-
dicting (i). If the next number is 3, reversing the order to obtain 3; 1; 3; 2; 1

reduces it to (b). Finally consider (b). By (i) and (ii) the next number must
be 2, followed by 3, so the two 4s are adjacent, contradicting (ii).

Next consider the following permutation for n > 4:

(4; 5; : : : ; n; 1; 2; 3; 2; 3; 4; 5; : : : ; n):

Clearly, (i) is satis�ed. (ii) follows from the fact that there does not exist a
set of four consecutive terms which is a permutation of (1;2; 3; 4).

In conclusion, the answer is: n > 4.
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Also solved by HANS ENGELHAUPT, Franz{Ludwig{Gymnasium, Bam-
berg, Germany; FLORIAN HERZIG, student, Perchtoldsdorf, Austria;
RICHARD I. HESS, Rancho Palos Verdes, California, USA; and DAVID E.
MANES, SUNY at Oneonta, Oneonta, NY, USA. There was one incomplete
solution.

2132. [1996: 124] Proposed by �Sefket Arslanagi �c, Berlin, Germany.

Let n be an even number and z a complex number.

Prove that the polynomial P (z) = (z + 1)n � zn � n is not divisible by
z2 + z + n.

I. Solution by Richard I. Hess, Rancho Palos Verdes, California, USA.

Let Q(z) = z2+ z+n. For n = 0 or 1, we have that P (z) = 0, which
is clearly divisible by Q(z). For any n > 1, suppose that P (z) is divisible
by Q(z). Then Q(n) divides P (n).

ButQ(n) = n(n+2)� 0 (mod n), whileP (n) = (n+1)n�n2�n �
1 (mod n). Thus P (z) is not divisible by Q(z).

II. Composite solution by F.J. Flanigan, San Jose State University, San
Jose, California, USA and Edward T.H. Wang, Wilfrid Laurier University, Wa-
terloo, Ontario.

Let D(z) = z2 + z+ n. If n = 0; 1, then P (z) = 0, which is divisible
by D(z). If n = 2, then P (z) = 2z � 1, which is clearly not divisible by
z2 + z + 2.

For n > 2, suppose thatD(z) dividesP (z). Then, sinceD(z) is monic,
P (z) = Q(z)D(z), where Q(z) is a polynomial of degree n� 3 with integer
coe�cients. Thus P (0) = Q(0)D(0), or 1 � n = nQ(0), which is clearly
impossible.

III. Solution and generalization by Heinz-J �urgen Sei�ert, Berlin, Ger-
many.

Let n � 2 be an even integer. We shall prove that if a, b, c, are complex
numbers such that a 6= 0, then the polynomial

P (z) = (z + b)n� zn � a

is not divisible by z2 + bz + c.

The proposer's result, which does not hold for n = 0, is obtained when
a = c = n and b = 1.

Let z1 and z2 denote the (not necessarily distinct) roots of z2+ bz+ c.
The z1+ z2 = �b, so that P (z1) = zn2 � zn1 � a, and P (z2) = zn1 � zn2 � a.
Since P (z1) + P (z2) = �2a 6= 0, our result follows.

The example (z+ 1)6� z6 = (z2+ z+1)(6z3+9z2+ 5z+1) shows
that the condition a 6= 0 cannot be dropped.
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Also solved by: CHARLES R. DIMINNIE, Angelo State University, San
Angelo, TX, USA; DAVID DOSTER, Choate Rosemary Hall, Wallingford, Con-
necticut, USA; FLORIAN HERZIG, student, Perchtoldsdorf, Austria;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; KEE-WAI
LAU, Hong Kong; DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA;
NORVALD MIDTTUN (two solutions), Royal Norwegian Naval Academy,
Norway; ROBERT P. SEALY,MountAllisonUniversity, Sackville, New Bruns-
wick; DAVID R. STONE, Georgia Southern University, Statesboro, Georgia,
USA; and the proposer.

Besides the solvers listed in Solutions I and II above, only Janous ob-
served and showed that the assertion holds for all n � 2.

2134?. [1996: 124] Proposed by Waldemar Pompe, student, Univer-
sity of Warsaw, Poland.

Let fxng be an increasing sequence of positive integers such that the
sequence fxn+1 � xng is bounded. Prove or disprove that, for each inte-
ger m � 3, there exist positive integers k1 < k2 < : : : < km, such that
xk1 ; xk2 ; : : : ; xkm are in arithmetic progression.

Solution by David R. Stone, Georgia Southern University, Statesboro,
Georgia, USA, and Carl Pomerance, University of Georgia, Athens, Georgia,
USA.

An old and well-known result of van der Waerden [4] is that if the
natural numbers are partitioned into two subsets, then one of the subsets has
arbitrarily long arithmetic progressions. It is not very di�cult to show [1]
that van der Waerden's theorem has the following equivalent formulation:

for every number B and positive integer m, there is a number
W (m;B) such that if n � W (m;B) and 0 < a1 < a2 < : : : <

an are integers with each ai+1� ai � B, thenm of the ai's form
an arithmetic progression.

Thus, for the problem as stated, if we let B be the bound on the di�er-
ences xn+1 � xn, then for any given m � 3, there exists a W (m;B) with
the property stated above. Then, for any n � W (m;B), any �nite sub-
sequence of length n will have an arithmetic progression of length m as a
sub-subsequence. That is, the original sequence contains in�nitely many
arithmetic progressions of lengthm.

In 1975, Sz �emeredi [3] proved a conjecture of Erd }os and Tur �an which im-
proves on van der Waerden's Theorem, relaxing the condition that the se-
quence's di�erences have a uniform upper bound, requiring only that the
sequence have a positive upper density. Hence the problem posed here also
follows from the theorem of Sz �emeredi, who, we believe, received (for this
result) the highest cash prize ever awarded by P �al Erd }os | $1,000.
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Comment by the solvers.
Do we know how Pompe became interested in this problem?

References

[1] T.C. Brown, Variations on van der Waerden's and Ramsey's theorems,
Amer. Math. Monthly 82 (1975), 993{995.

[2] Carl Pomerance, Collinear subsets of lattice point sequences| an analog
of Szemeredi's Theorem, J. Combin. Theory 28 (1980), 140{149.

[3] E. Szemeredi, On sets of integers containing no k elements in arithmetic
progression, Acta Arith. 27 (1975), 199{245.

[4] B.L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw.
Arch. Wisk. 15 (1928), 212{216.

Also solved by THOMAS LEONG, Staten Island, NY, USA; and JOEL
SCHLOSBERG, student, Hunter College High School, New York NY, USA;
both using van der Waerden's theorem or its variation. Leong gave the ref-
erence: Ramsey Theory by R.L. Graham, B.L. Rothschild and J.H. Spencer.
Schlosberg remarked that van der Waerden's theorem was discussed in the
July 1990 issue of Scienti�c American.

The proposer showed that van der Waerden's theorem follows easily
from the statement of his problem. His intention (and hope) was to �nd a
proof independent of van der Waerden's theorem. This would establish a
new \proof" of the latter. In view of his comment and the solution above, it
should be obvious that the two statements are equivalent, and hence such a
proof is unlikely.

2135. [1996: 124] Proposed by Joaqu��n G �omez Rey, IES Luis Bu ~nuel,
Alcorc �on, Madrid, Spain.

Let n be a positive integer. Find the value of the sum

bn=2cX
k=1

(�1)k(2n� 2k)!

(k+ 1)!(n� k)!(n� 2k)!
:

Solution by Florian Herzig, student, Perchtoldsdorf, Austria. [Modi-
�ed slightly by the editor.]

Let Sn denote the given summation. Note that S1 is an \empty" sum,

which we shall de�ne to be zero. We prove that Sn = �
�

2n

n+ 2

�
.

Since

�
2

3

�
= 0, this is true for n = 1. Assume that n � 2. Follow-

ing standard convention, for k = 0, 1, 2, : : : , let
�
xk
�
(f(x)) denote the
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coe�cient of xk in the series expansion of the function f(x). Let

P (x) =
�
1� x2

�n+1
(1� x)�(n+1):

Then, by the binomial expansion, its generalization (by Newton), and the

well-known fact that

��n
k

�
= (�1)k

�
n+ k� 1

k

�
, we have:

�
x2k+2

� ��
1� x2

�n+1
�

=
h�
x2
�k+1

i ��
1� x2

�n+1
�

= (�1)k+1

�
n+ 1

k+ 1

�
;

for k = �1; 0; 1; 2; : : : , and

�
xn�2k

� �
(1� x)

�(n+1)
�

= (�1)n�2k

��n� 1

n� 2k

�

=

�
2n� 2k

n� 2k

�

for k � n=2. Hence�
xn+2

�
(P (x)) =

�
x2k+2 � xn�2k

�
(P (x))

=

bn=2cX
k=�1

(�1)k+1

�
n+ 1

k+ 1

��
2n� 2k

n� 2k

�
:

On the other hand, since P (x) = (1 + x)n+1, we have
�
xn+2

�
(P (x)) = 0.

Therefore
bn=2cX
k=�1

(�1)k+1

�
n+ 1

k + 1

��
2n� 2k

n� 2k

�
= 0:

Since

Sn = � 1

n+ 1

bn=2cX
k=1

(�1)k+1

�
n+ 1

k + 1

��
2n� 2k

n� 2k

�
;

we get

Sn = � 1

n+ 1

��
n+ 1

1

��
2n

n

�
�
�
n+ 1

0

��
2n+ 2

n+ 2

��

=
(2n+ 2)!

(n+ 1)(n+ 2)!n!
� (2n)!

n!n!

=
f2(2n+ 1)� (n+ 2)(n+ 1)g

(n+ 2)!n!
� (2n)!

=
�n(n� 1) (2n)!

(n+ 2)!n!
=

�(2n)!

(n+ 2)!(n� 2)!

= �
�

2n

n+ 2

�
:
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Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; HEINZ-J�URGEN SEIFFERT, Berlin, Germany; and the proposer. The
correct answer, without a proof, was sent in by RICHARD I. HESS, Rancho
Palos Verdes, California, USA.

If, in the given summation, one lets k start from zero (this was, in fact,
the proposer's original idea), then it is easy to see that the answer becomes

1

n+ 2

�
2n+ 2

n+ 1

�
;

the (n+ 1){th Catalan number.

2136. [1996: 124] Proposed by G.P. Henderson, Campbellcroft, On-
tario.

Let a; b; c be the lengths of the sides of a triangle. Given the values of
p =

P
a and q =

P
ab, prove that r = abc can be estimated with an error

of at most r=26.

Solution by P. Penning, Delft, the Netherlands.
Scale the triangle down by a factor (a+ b+ c). The value of p then be-

comes 1, the value of q becomes Q =
q

(a+ b+ c)2
, and R =

r

(a+ b+ c)3
.

Introduce s =
a+ b

2
and v =

a� b

2
:

a = s+ v; b = s� v; c = 1� 2s;

Q = 2s� 3s2 � v2; R = (1� 2s)(s2� v2):

Since a, b, c, represent the sides of a triangle, we must require

0 < c < a+ b and � c < a� b < c:

[Ed: in other words, the triangle is not degenerate | a case which must be
discarded as inappropriate.]
This translates to

1

4
< s <

1

2
and jvj < 1

2
� s:

Lines of constant Q are ellipses in the s{v plane, with centre s = 1
3
, v = 0.

So we write:

s =
1

3
+ A cos(x); v =

p
3A sin(x);

with A =

p
(1� 3Q)

3
replacing Q.

Very symmetrical expressions are now obtained for a, b, c:

a =
1

3
�2A cos(120�+x); b =

1

3
�2A cos(120��x); c =

1

3
�2A cos(x):
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R = abc� 1

27
� A2 � 2A3 cos(3x):

Now, R is minimal for x = 0:

Rmin =
1

27
� A2 � 2A3:

R is maximal for x = 60� provided that a � 1
2
, A � 1

12
:

Rmax =
1

27
� A2 + 2A3:

For 1
12
� A � 1

6
, we have cos(120� + xmax) = � 1

12A
, since the maximum of

a is 1
2
. So

cos(3xmax) = � 4

(12A)3
+

3

(12A)
;

Rmax =
1

27
� A2 � 2A3

�
� 4

(12A)3
+

3

(12A)

�
=

1

24
� 3A2

2
:

We must determine the reciprocal of the relative spread in R:

F =
Rmax +Rmin

Rmax �Rmin

:

For A � 1
12
, we have

F =

1
27
� A2

2A3
:

The minimum in F is reached at A = 1
12
, so that Fmin = 26.

For 1

12
� A � 1

6
, both Rmax and Rmin are zero for A = 1

6
. So

Rmin =

�
1

6
� A

��
2

9
+

4A

3
+ 2A2

�
;

Rmax =

�
1

6
� A

��
1 + 6A

4

�
:

The minimum in F is also at A = 1

6
and yields the same value for Fmin = 26.

Also solved by NIELS BEJLEGAARD, Stavanger, Norway; and the pro-
poser. One incorrect submission was received in that the sender assumed
that a degenerate triangle disproved the proposition.
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2137. [1996: 124, 317; 1997: 48] Proposed by Aram A. Yagubyants,
Rostov na Donu, Russia.

Three circles of (equal) radius t pass through a point T , and are each
inside triangle ABC and tangent to two of its sides. Prove that:

(i) t =
rR

R+ r
, (ii) T lies on the line segment joining the centres

of the circumcircle and the incircle of 4ABC.

Solution by Gottfried Perz, Pestalozzigymnasium, Graz, Austria.

A B

C

X Y

Z

I

T

r r

r

r

r

r

r
r

We denote the centres of the three
circles by X, Y and Z. Since the
three circles pass through a common
point T and have equal radius t, it
follows that X, Y and Z lie on the
circle with centre T and radius t.
Since each of the circles is tangent to
two sides of 4ABC, it follows that
X, Y andZ lie on the internal bisec-
tors of \A, \B and\C. SinceAB is
a common tangent of two intersect-
ing circles with radius t, it follows
that ABkXY , and analogously,
we have Y ZkBC and ZXkAC.

This implies that the lines AX, BY and CZ are bisectors of the angles of
4XY Z as well, and so 4ABC and4XY Z have the same incentre I.

Thus we conclude that triangles4ABC and4XY Z are homothetic with I
as centre of similitude. This implies that:

(i) the ratio of the radii of the circumcircles of4ABC and4XY Z equals
the ratio of the radii of the incircles of the triangles; that is

R : t = r : (r � t) Rr � Rt = rt

t(R+ r) = Rr t =
Rr

R+ r
;

(ii) as corresponding points in the homothety, T (the circumcentre of
4XY Z) and the circumcentre of 4ABC lie collinear with I, as de-
sired.

Also solved by �SEFKET ARSLANAGI �C, University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina; NIELS BEJLEGAARD, Stavanger, Norway;
FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain;
CHRISTOPHER J. BRADLEY, CliftonCollege, Bristol,UK; HAN PINGDAVIN
CHOR, student, Cambridge, MA, USA; HANS ENGELHAUPT, Franz{Ludwig{
Gymnasium, Bamberg, Germany; FLORIAN HERZIG, student, Perchtolds-
dorf, Austria; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Aus-
tria; V �ACLAV KONE �CN �Y, Ferris State University, Big Rapids, Michigan,USA;
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P. PENNING, Delft, the Netherlands; TOSHIO SEIMIYA, Kawasaki, Japan;
D.J. SMEENK, Zaltbommel, the Netherlands; PAUL YIU, Florida Atlantic
University, Boca Raton, Florida, USA; and the proposer.

Janous has seen both parts of the problem before; although unable to
provide a reference to part (i), he reconstructed the argument that he had
seen, which was much like our featured solution. He, among several others,
noted that (ii) is essentially problem 5 of the 1981 IMO [1981: 223], solution
on pp. 35{36 ofM.S. Klamkin, International Mathematical Olympiads 1979{
1985, MAA, 1986. See also the \generalization" 694 [1982: 314] and the
related problem 1808 [1993: 299].

2138. [1996: 169] Proposed by Christopher J. Bradley, Clifton Col-
lege, Bristol, UK.

ABC is an acute angle triangle with circumcentre O. AO meets the
circle BOC again at A0, BO meets the circle COA again at B0, and CO

meets the circle AOB again at C0.
Prove that [A0B0C0] � 4[ABC], where [XY Z] denotes the area of

triangle XY Z.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
There is an even sharper inequality:

[A0B0C0] � 3 3

vuut Y
cyclic

cos2(B � C)

sinA sin 2A
[ABC]:

For this, we �rst represent [A0B0C0] as a function of A, B, C and R
(the circumradius).

A B

A0

C

O

We have: \AOB = 2C, so that
\BOA0 = 180� � 2C and \BA0O =

\BCO = 90� �A.

[Both angles subtend the line BO on
circle BOC!] Thus,
\A0BO

= 180� � (180� � 2C)� (90� � A)

= A+ 2C � 90�

= 180� � B +C � 90�

= 90� � (B � C):

Hence, using the law of sines in4OBA0, we get

jOA0j
sin(90� � (B � C))

=
R

sin(90� �A)
;

that is, jOA0j = R cos(B � C)

cosA
.
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Similarly, jOB0j = R cos(C � A)

cosB
and jOC0j = R cos(A�B)

cosC
.

Now, since \A0OB0 = \AOB = 2C, we get, via the trigonometric area
formula of triangles, that

[A0B0O] = 1

2
jOA0j � jOB0j � sin(\A0OB0)

=
R2

2

cos(B � C) cos(C � A)

cosA cosB
sin 2C;

and similarly for [B0C0O] and [C0A0O]. Thus

[A0B0C0] = [A0B0O] + [B0C0O] + [C0A0O]

=

0
@ X

cyclic

cos(C � A) cos(C � B)

cosA cosB
sin2C

1
A� R2

2
: (1)

Next, we recall the formula

[ABC] = 2R2
Y

cyclic

sinA (2)

From (1), we get, via the arithmetic-geometric-mean inequality:

X
cyclic

cos(C � A) cos(C �B)

cosA cosB
sin2C

� 3

2
4 Y
cyclic

�
cos2(B �C)

cos2A
� sin 2A

�35
1

3

= 6

2
4 Y
cyclic

cos2(B � C)

cosA
� sinA

3
5

1

3

= 6

2
4 Y
cyclic

cos2(B � C)

sin2A cosA

3
5

1

3

�
Y

cyclic

sinA

= 12

2
4 Y
cyclic

cos2(B � C)

sinA sin 2A

3
5

1

3

�
Y

cyclic

sinA;

so that, using (1) and (2),

[A0B0C0] � 3

2
4 Y
cyclic

cos2(B � C)

sinA sin2A

3
5

1

3

� [ABC]
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as claimed.

Finally, we recall the angle inequality:

Y
cyclic

cos2(B �C) � 512

27

Y
cyclic

�
sin2A cosA

� 24= 64

27

Y
cyclic

(sinA sin2A)

3
5

which is valid for all triangles (but interesting only for acute triangles) with
equality if and only if A = B = C = 60�, or the degenerate cases with two
of A, B, C being right angles. This immediately yields

2
4 Y
cyclic

cos2(B � C)

sinA sin2A

3
5

1

3

� 3

r
64

27
=

4

3
;

and the original inequality follows.

Also solved by D.J. SMEENK, Zaltbommel, the Netherlands.

2139. [1996: 169, 219] Proposed by Waldemar Pompe, student, Uni-
versity of Warsaw, Poland.

Point P lies inside triangle ABC. Let D, E, F be the orthogonal pro-
jections from P onto the lines BC, CA, AB, respectively. Let O0 and R0

denote the circumcentre and circumradius of the triangleDEF , respectively.
Prove that

[ABC] � 3
p
3R0

q
R02 � (O0P )2;

where [XY Z] denotes the area of triangle XY Z.

Solution by the proposer.

Let C denote the circumcircle of DEF . Let P 0 be the symmetric point
to P with respect to O0. Let E be the ellipse with foci P and P 0 tangent
(internally) to C. The diameter of the ellipse E is 2R0, and its area is equal

to �R0
q
R02 � (O0P )2. Since the locus of the orthogonal projections from

P onto tangents to the ellipse E is the circle C, the sides of ABC must be
tangent to E. Thus E is inscribed in the triangle ABC. Let L be an a�ne
mapping which takes E to some circle of radiusR, and let it take the triangle
ABC to the triangleA0B0C0. Since L preserves the ratio of areas, we obtain

[ABC]

�R0

q
R02 � (O0P )2

=
[ABC]

area of E =
[A0B0C0]

�R2
� 3

p
3R2

�R2
; (1)

since among all triangles circumscribed about the given circle, the one of
smallest area is the equilateral triangle. Thus (1) is equivalent to the desired
inequality, so we are done.
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Remarks: The same proof works also for an n-gon which has an inte-
rior point whose projections onto the sides of the n-gon are concyclic. The
analogous inequality will be

[A1 : : : An] � n tan

�
�

n

�
R0
q
R02 � (O0P )2 :

Note that as a special case, when the n-gon has the incircle and P = O0 we
obtain the well-known result that among all n-gons circumscribed about a
given circle, the one of smallest area is the regular one, though it is used in
the proof.

2140. [1996: 169] Proposed by K.R.S. Sastry, Dodballapur, India.
Determine the quartic f(x) = x4+ ax3+ bx2+ cx� c if it shares two

distinct integral zeros with its derivative f 0(x) and abc 6= 0.

Solution by Florian Herzig, student, Perchtoldsdorf, Austria.

Let the zeros of f(x) be the integers p and q; without loss of generality
p > q. It is a well-known theorem that if a polynomial Q(x) divides the

polynomial P (x) as well as the derivative P 0(x), then (Q(x))
2
divides P (x).

Applying the theorem for this problem, we obtain

f(x) = (x� p)2(x� q)2 = x4 + axx + bx2 + cx� c:

Comparing coe�cients of x and the constant term yields

0 = c+ (�c) = �2(p+ q)pq+ p2q2:

As pq = 0 implies abc = 0, we may divide by pq

pq � 2p� 2q = 0

(p� 2)(q� 2) = 4 = 4 � 1 = (�1)(�4)

Hence (p; q) = (6;3) _ (1;�2) (since p 6= q) and the two possible polyno-
mials are

f1(x) = (x� 6)2(x� 3)2 = x4 � 18x3 + 117x2 � 324x+ 324;

f2(x) = (x+ 2)2(x� 1)2 = x4 + 2x3 � 3x24x+ 4:

Also solved by CHRISTOPHER J. BRADLEY, Clifton College, Bristol,
UK; THEODORE CHRONIS, student, Aristotle University of Thessaloniki,
Greece; CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX,
USA; DAVIDDOSTER, Choate Rosemary Hall, Wallingford, Connecticut,USA;
HANS ENGELHAUPT, Franz{Ludwig{Gymnasium, Bamberg, Germany;
F.J. FLANIGAN, San Jose State University, San Jose, California, USA; SHAWN
GODIN, St. Joseph Scollard Hall, North Bay, Ontario; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; V �ACLAV KONE �CN �Y, Ferris State



192

University, Big Rapids, Michigan, USA; BEATRIZ MARGOLIS, Paris, France;
L. RICE, Woburn Collegiate, Scarborough, Ontario; HARRY SEDINGER,
St. Bonaventure University, St. Bonaventure, NY, USA; HEINZ-J�URGEN
SEIFFERT, Berlin, Germany; SKIDMORECOLLEGE PROBLEMGROUP, Sara-
toga Springs, New York, USA; DIGBY SMITH,MountRoyal College, Calgary,
Alberta; and the proposer. There were eight incorrect or incomplete solu-
tions.

Do you know the equation of this graph?

Contributed by Juan-Bosco Romero M�arquez, Universidad de Valladolid, Valladolid, Spain.
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